

Design, planning and process engineering Part II

- Andreas Krieg MSc Rohnsweg 51 37085 Goettingen
- ***** +49 (0) 551 3073 822
 - **)** +49 (0) 172 2306 381
- kriegandreas@web.de

Int. Biogas Planning Course, March 27th – 30th, 2012 University of Hohenheim, Stuttgart

Milestones

- 2011 date Researcher, University of Applied Science and Arts, Goettingen, Biogas Process Engineering, currently: Dynamic Percolation
- 2008 date Associate Professor, Akademie für Erneuerbare Energien, Luechow, www.akademie-ee.de Seminars: Biomass for Energy, Facility Design, Construction,
 - **Bio-Fuels**
- 2006 date Senior Consultant, Krieg & Fischer Ingenieure, Goettingen, www.kriegfischer.de Education of engineers, waste technology

- 1999 2006 Foundation of Krieg & Fischer Ingenieure, Goettingen, HRM, Head of Construction Division, Financial Accounting
- 1990 1998 Employed at several companies, farm-scale biogas plants in Germany, collaboration with German Biogas Dissamination Projects, concept studies, evaluation of biogas projects in Africa and South-East-Asia,
 - 1990 Co-founder of German Biogas Association, Freising, www.biogas.org

AKADEMIE FÜR ERNEUERBARE ENERGIEN

General Outline

- Designing failures
 Substrate Mass balance
- Technical failures

Construction Piping Pumps and Conveyors Fluid Input Device Mixer

Substrate I

Effluents from Animal Housekeeping:

- Feaces, urine,
- bedding material,
- waste water,
- trash

Municipal organic solid waste from:

- Food industry, Markets
- Kitchen, Restaurants, Catering,
- Gardening, Greenery, Parks

possibly including any kind of trash

Substrate I, Parameters I-I

Effluents from Animal Housekeeping:

- Animal species, feed base
- If bedding material, what kind
- Age of Effluents (Maturity)
- TS, VS, TKN, Alkalinity, Particle size
- Kind and amount of Impurities (chains, ropes, fork-tines, stones)
- Load curve (differences in time and quantity)

Substrate I, Parameters I-II

Municipal organic solid waste:

- Pretreatment at source (Separation)
- Kind of Package
- Particle size
- Quantity of trash (metals, glas, chinaware, wires, ropes, stones)
- Load curve (differences in time and quantity)

Substrate II

Liquid food waste, e.g.:

- Spoilt juice,
- Expired beverages,
- Liquid by-products,
- Waste water with high COD

mostly only VS, no fibrous solids

Energy crops, e.g.:

- Maize,
- Beets,
- Potatoes,
- Spoilt Crops, non-food-biomass

Substrate II, Parameters II-I

Liquid food waste:

- History of origin
- Chemical composition:
 - TN, TKN, Ammonia-N
 - Phosporus (Total)
 - Sulfate, Sulfide (Total)
 - TOC
 - Alcalinity (as CaCO3), pH-value
- Concentrations:
 - Total Solids, TDS, Volatile Solids, Ash Content
 - COD (soluble), (total), BOD (soluble)
- Quality:
 - Protein, Fat, Carbohydrates, Calories
- Load curve (differences in time and quantity)

Substrate II, Parameters II-II

Energy crops:

- Chemical composition:
 - Nitrogen (Total)
- Concentrations:
 - Total Solids, TDS, Volatile Solids, Ash Content
- Quality:
 - Protein
 - Fat
 - Carbohydrates
 - Crude Fibre,
 - Lignin, mineral fraction (e.g. sand)
 - Calories
- Particle size
- Load curve (differences in time and quantity)

Intermediate Result I

Substrates:

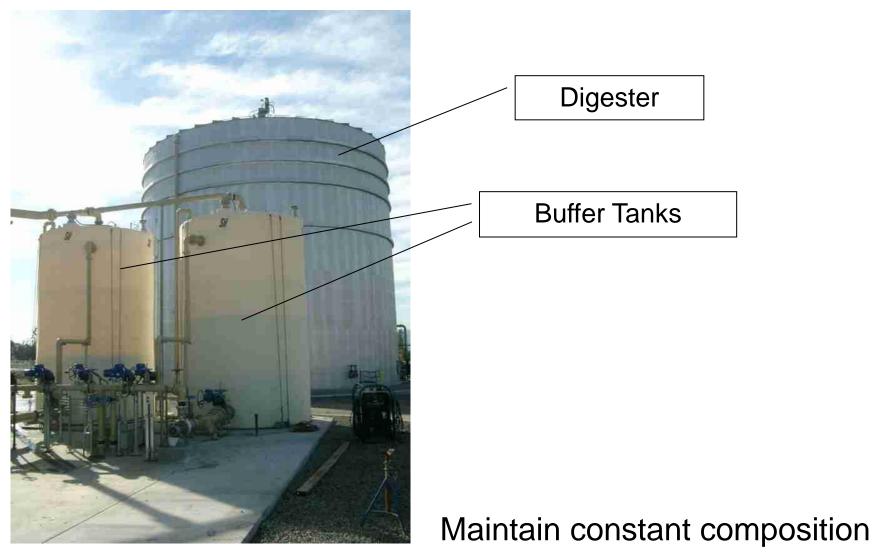
- Anticipatory substrate- (waste-)management
 # what, when, how much
 # quality control
- Buffer tanks as required (at first, in between, at last)
- Blend of different substrates (in case of straight composed waste)
- Operation control

Beware of trash

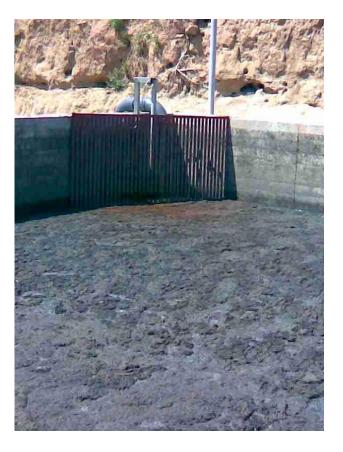
If you follow this, AD will produce biogas (energy) ongoing, as precalculated.

Dimensioning I Mass Balance I (Example)

Input			Starch	Oil	Raw Potato	Sludge	Total
Input (t/a)			4.495	636	97.610	6.583	109.324
Input (t/d)			12,32	1,74	267,42	18,04	299,52
Total solids	(%)		60,0%	100,0%	20,0%	30,0%	22,7%
Total solids (t/a)		2697,0	636,0	19522,0	1974,9	24829,9
Total solids (t/d)			7,4	1,7	53,5	5,4	68,0
Volatile solids (% TS)			90,0%	95,0%	90,0%	90,0%	90,1%
Volatile solids (t/a)			2.427	604	17.570	1.777	22.379
Volatile solid	ls (t/d)		6,7	1,7	48,1	4,9	61
Water (t/a)			1.798	0	78.088	4.608	84.494
Water (t/d)			5	0	214	13	231
spec. Gas P	roduction rate (m³/t VS)	600	1.000	600	700	
a star water and the second	rmal conditions	and the second se					
Biogas							
Gas production (m ³ /a)		1.456.380	604.200	10.541.880	1.244.187	13.846.647	
Gas producti	ion (m ³ /d)		3.990	1.655	28.882	3.409	37.936
Gas producti	ion (t/a)	·	1.719	713	12.439	1.468	16.339
Gas producti	ion (t/d)		4,71	1,95	34,08	4,02	44,76
Water content:		4%	69	29	498	59	654
Wet Gas 37°C (t/a)			1.787	741	12.937	1.527	16.993
Wet Gas 37°C (t/d)			4,90	2,03	35,44	4,18	46,56


Dimensioning I Mass Balance II (Example)

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997					10 10 1 10 1 10
Reactor effl	uent				
Total solids (t/a)					8.491
Total solids (t/d)					23
Volatile solids (t/a)					6.040
Volatile solid	ls (t/d)				17
Water (t/a)					83.841
Water (t/d)	P				230
Output (t/a)	5. S.		6 Monate:	46.166	92.331
Total solids					9,2%


Dimensioning II Technical Aspects I

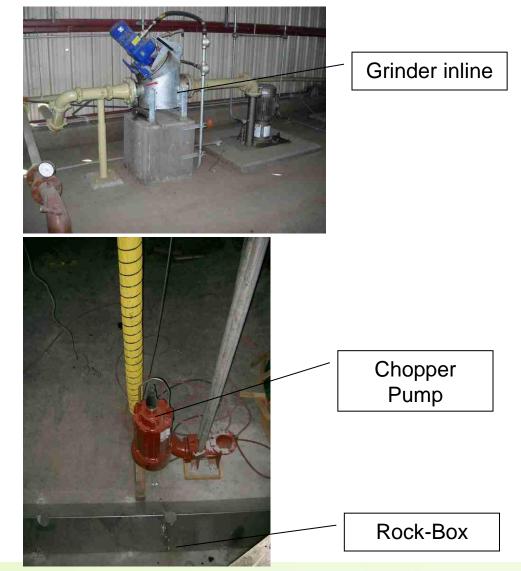
Dimensioning II Technical Aspects II

Maintain constant feed

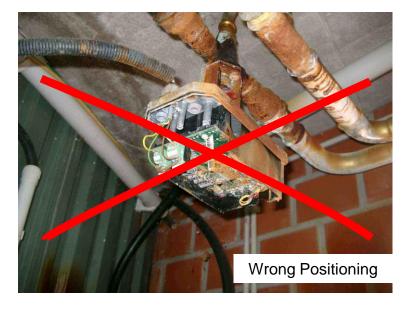
RECEIVEN

Dimensioning II Technical Aspects III

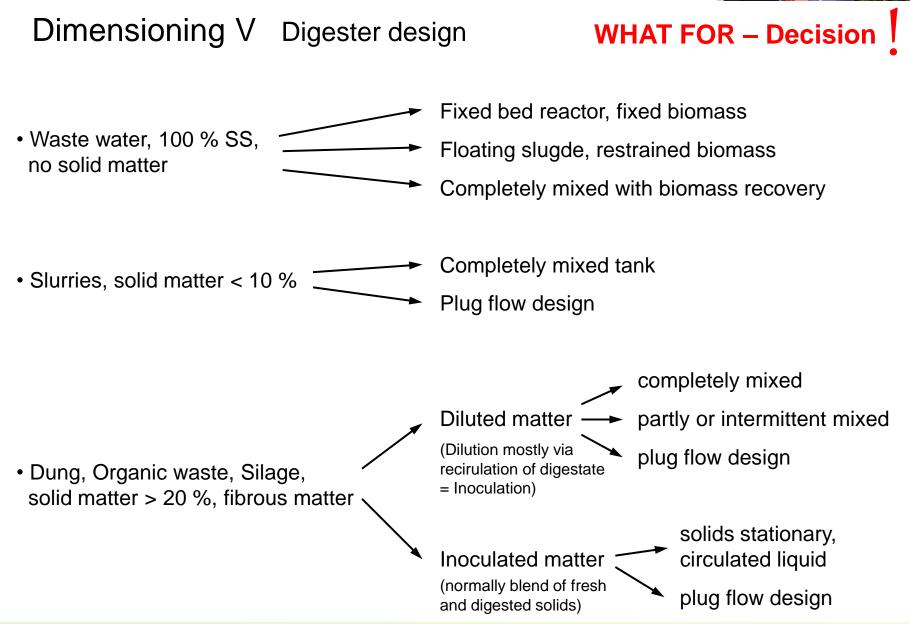
Sedimentation


Maintain constant operation

Dimensioning III Reliable Technology (Example)



Food waste injection point



Dimensioning IV Approved Fitting and Piping

Intermediate Result II

7 rules to run a digester

- Maintain constant feed rate and composition
- Avoid overfeeding and abrupt changes
- Avoid foaming
- Don't: add substrate with a low pH value add substrate with a considerably high protein content
 - overfeed the digester
 - mix improper and/or inconsistent
- Choose an appropriate temperature and keep it constant
- Mix as much as necessary and as little as possible
 Keep in mind: all in all out.
- Maintain continuous mixing

Construction

How to differentiate the tanks ?

- 1. By function
- 2. By material
 - Concrete (in situ; precast; pre-stressed)
 - Steel (glass coated steel; stainless steel)
 - Others (fiberglass)

in particular cases: Brick, PE, Synthetic rubber

Digestate and Gas Storage

Digester

Reception Tank

Concrete or Steel Tank ?

- Concrete:
- + high compression strength
- + easy installation of tank equipment (no/low static concerns)
- +/- cheap
- in situ construction: quality management
- Steel:
- + high tensile strength
- + easy to manufacture
- + easy quality control
- all static and dynamic loads on the tank defined for design in beforehand
- unexpected loads (mostly underpressure) leads easily to demolition

Concrete or Steel Tank ?

- Main argument is the price if the design is done properly
- Typical types of use
 - Concrete tanks as storage tanks or flat digester: diameter up to 32 m; height up to 8 m
 - Concrete tanks as high digester: height up to 14 m by 15 m diameter
 - Steel tanks as high digester: height up 20 m by 19 m diameter

Construction failures

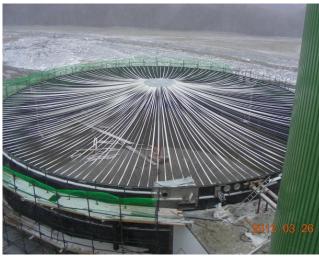
Holes in the tank wall !?

- Iron mold too hot
- water in the ready-mix-concrete insufficient

Construction failures

Seal of fittings in the wall insufficient

Too large Crack Width (e.g. inadequate reinforcement)


www.akademie-ee.de

AKADEMIE FÜR ERNEUERBARE ENERGIEN

Construction failures

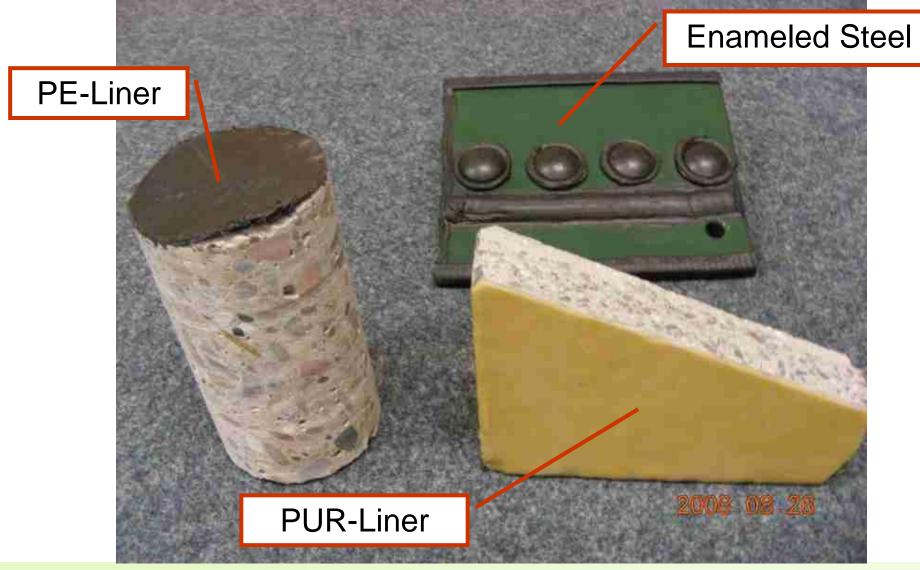
Unexpected loads on the wall (Importance of safety factor)

www.akademie-ee.de

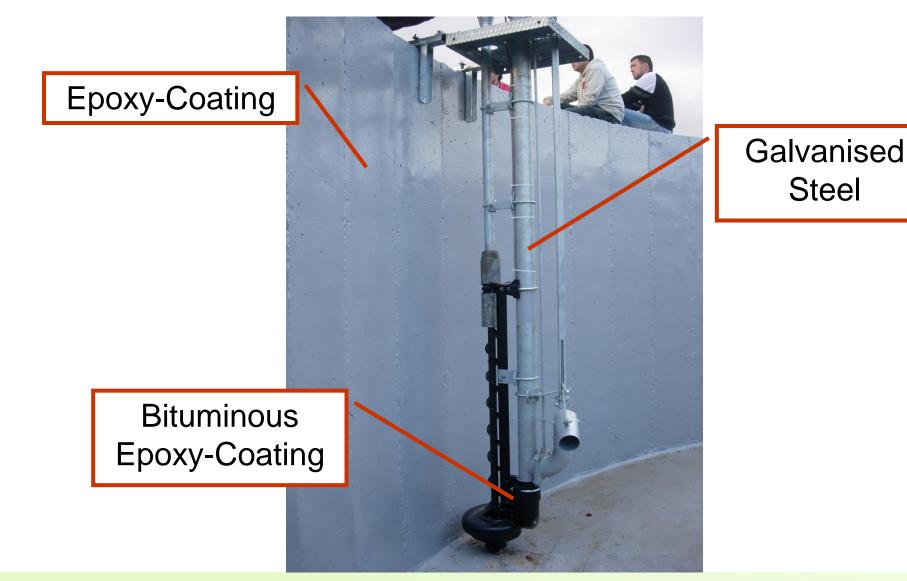
JERBARE

Construction failures

Chemical Corrosion


FÜR ERNEUERBARE

Construction failures



Corrosion Protection

Corrosion Protection: Concrete, Pump

www.akademie-ee.de

Piping

	Biogas	Hot water	Substrate	
	stainless steel	PP / mild steel	PVC / PE / PP mild steel	
Below ground	PE	PP / mild steel (with plastic coating)	PVC / PE / PP	

Piping

- Pipes made of PE
- (+) Medium- and UV resistant
- (+) Connections defined to be unbreakable

(+) Cheap

- (-) Temperatures > 60° C
- (-) Easily deformed by pressure

Major Problems of Plastic Pipes (If application is inadequate)

Demolition by hot water and high pressure

Diffusion of inorganic compounds (Example: internal heating pipe)

Piping

- Pipes made of PVC
- (+) Medium resistant
- (+) Easily assembled by adhesive bonded joint
- (+) Cheap
- (-) Not UV resistant
- (-) Brittle at low temperatures
- (-) Less aging-resistant than other materials
- (-) Temperatures >60° C

Piping

- Pipes made of mild steel
 - (+) Temperature resistant
 - (+) Easily assembled
 - (+) Very flexible installation
- (+) Long life
 - (-) Less medium resistant than pipes made of plastic(-) Corrosion

Piping

- Pipes made of stainless steel
- (+) Very long life
- (+) Temperature resistant
- (+) Medium resistant
- (+) Thermal conductivity

(-) Expensive

(-) No installation underground (without coating!)

Piping

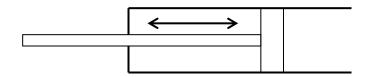
Under Construction pay attention to

- Mechanical damage
- Visible tank openings
- Correct assembling and tightness by manufacturer
- Frost protection

Pumps and	Conveyors
-----------	-----------

Types of Pumps

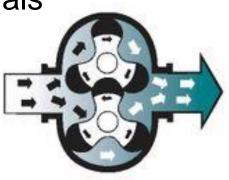
- Positive-displacement pump
 - \rightarrow helical rotor pump
 - \rightarrow rotary lobe pump
 - \rightarrow piston pump
- Centrifugal pump




```
Pumps and Conveyors
```

Helical rotor pump / Piston pump

- (+) Substrates with high dry matter contents
- (+) Self priming pump
- (+) High discharge pressures (up to 24 bar)
- (-) Minor flow rate
- (-) Long fibred materials
- (-) High abrasion wear
- (-) Assembly length



Pumps and Conveyors

- Rotary lobe pump
- (+) Self-priming
- (+) Bigger particles and long fibred materials
- (+) Pumping capacity about 800 m³/h
- (+) Discharge pressures to 12 bar

(-) High abrasion wear

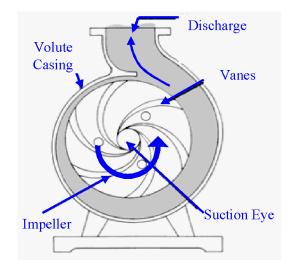
Major Problems of Positive-displacement Pumps

(If application is inadequate)

Abrasion

e.g. stones

e.g. robes and wires




```
Pumps and Conveyors
```

Centrifugal pump (+) Good knowledge and experience (+) Simple and tough construction (+) High flow rates

(-) Minor total solid content(-) Low discharge head(-) Not self-priming

Major Problems of Centrifugal Pumps

(If applicaton is inadequate)

Corrosion/Abrasion

Blockage

FÜR ERNEUERBARE

Pumps and Conveyors Straight input of solids:

Screw

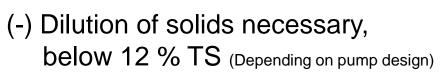
Liquefied input of solids:

• Mixing Pit

• Fluid input device

Screw Conveyor

- (+) For bulk material, chopped energy crops
- (+) Low Investment
- (+/-) Reliable on free flowing substrates only (e.g Corn silage)
- (-) Not for greasy stuff(e.g. Dung with less straw)
- (-) High abrasion
- (-) Max. 12 m vertical height



Discharge off-gas

Mixing Pit

- (+) For all kind of chopped solid substrates and slurries
- (+) Unsusceptible at presence of contraries

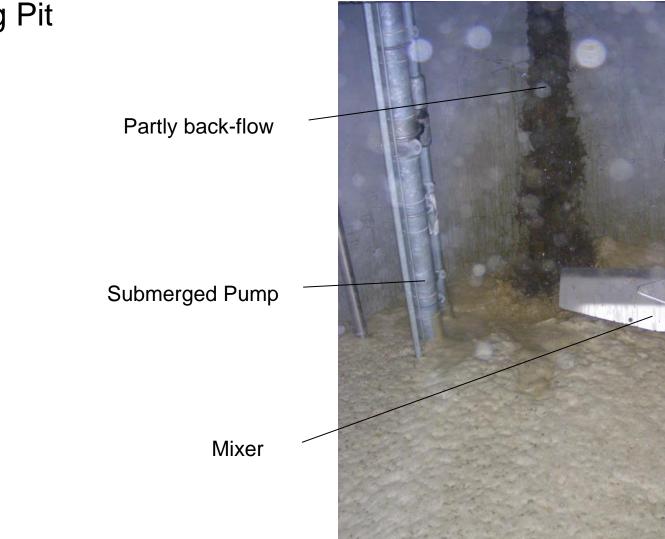
- (-) Restricting factor is capacity of mixer
- (-) Emissions during operation

AKADEMIE

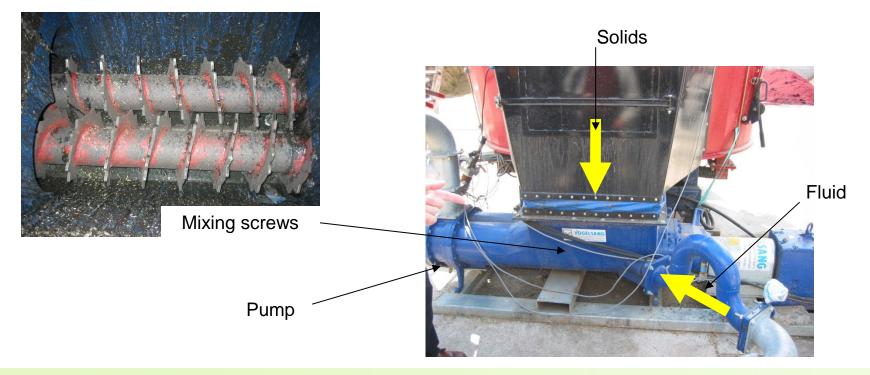
ENERGIEN

FÜR ERNEUERBA

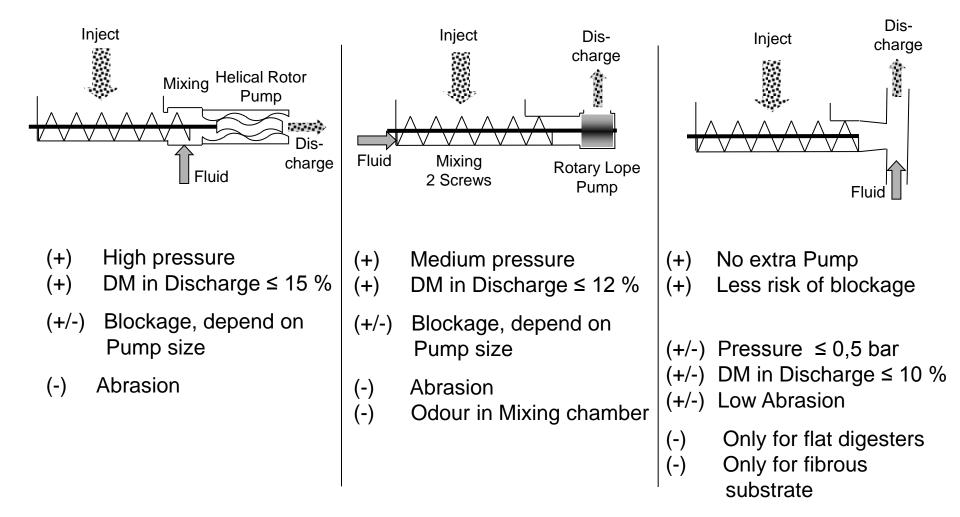
```
Submerged mixer
```


Submerged pump

FÜR ERNEUERBARE ENERGIEN

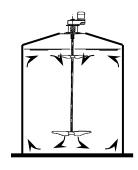


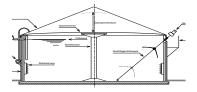
Fluid Input Device I


- (+) For chopped energy plants or solid waste as well as slurries
- (+) Usable for any design of digesters

- (-) Dilution of solids necessary, until below 15 % TS (dep. on pump design)
- (-) Sensitive to stones and trash
- (-) High abrasion at presence of sand or the like

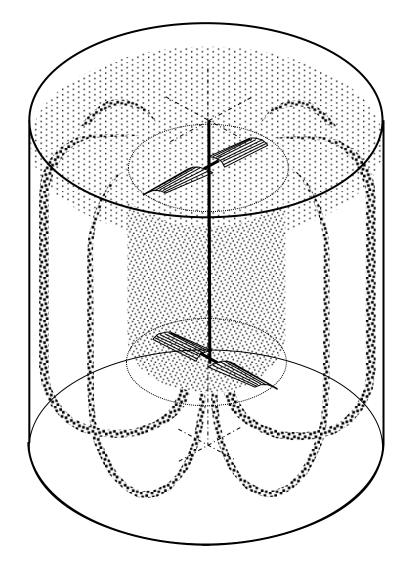
Fluid Input Device II – technical variants





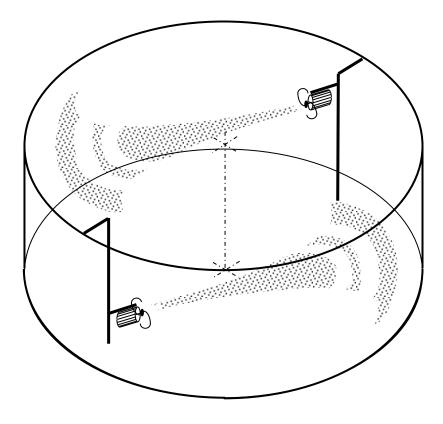
- Type of Digester, Agitator, Mixer
 - Horizontal digester plug flow, vertical mixing bypass reduced by high viscosity
 - High upright digester complete mixing, homogeneous temperature, bypass possible

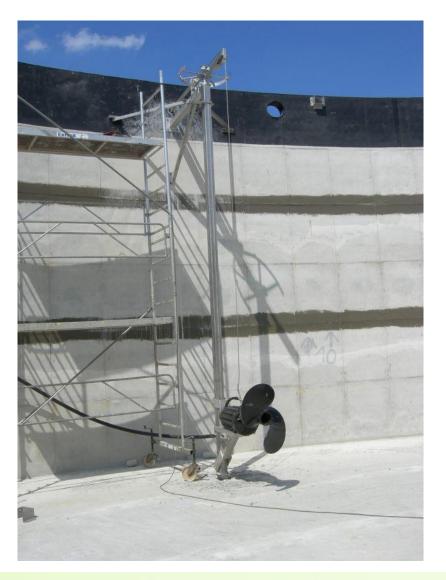
 Flat upright digester less mixed, zoning possible, bypass possible



Tall Digester, Top Mounted Mixer

Operation Top Mounted Mixer

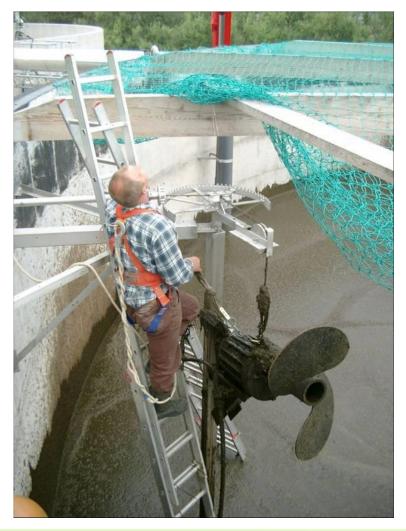

- Permanent=24 h/d
- 13-18 rds/m
- 11,5 30 KW
- Frequency inverter for low energy consumption



Flat Digester, Submerged Mixer

Submerged Mixer, Problem

Insufficient Mixing


Submerged Mixer, Problem

Corrosion, Abrasion

Submerged Mixer, Problem

Complex repair and maintenance regarding personal security and emissions

Nowadays submerged mixer are used like disposables

Risks of all mixed Digester:

- underpowered Mixer / Agitator
- Wrong positioned M. / A.
- Digest substrates for what Mixer is not designed
- No consideration of chances in density / release of sand / stratification of substrates during digestion

Cleaner

Intermediate Result III

You have to consider:

Quality of the media (transported, mixed and stored)
 + structure, + viscosity, + abrasiveness,
 + temperature, + pressure, + pH-value, + stratification risk

- Changes in composition during AD of the media
- Quality of construction and technical equipment
 + acid protection, abrasion protection
- Dimension and Design of the equipment + reserve capacity, + sufficient internal cross section surface / volume, sedimentation zones

Design, planning and process engineering Part II

Thank you for listening